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we substitute into it the expressions 

Formula (5.8) may be rewritten in the form 

Using the theory of residues to evaluate the integrals, we obtain (2.3). 
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LONG-WAVE THERMOCAPILLARY CONVECTION IN LAYERS WITH DEFORMABLE INTERFACES* 

A.A. NEPOMNYASHCHII and I.B. SIMANOVSKII 

Using non-linear equations describing finite-amplitude deformation of 
the interfaces /l/ of a system of horizontal immiscible liquid layers, 
long-wave convective flows are studied for nearly critical Marangoni 
numbers. The distortion of the interfaces is assumed to be weak. 
Approximate evolution equations are obtained for the deformation of the 
interfaces. Analytic solutions describing the stationary surface 
profile for thermocapillary convection are found, and their stability is 
investigated. 

1. Suppose two horizontal solid plates (z = 0, 2, = a) are maintained at constant and 
different temperatures, (the temperature difference being equal to 8), and that the space 
between the plates is filled with two immiscible liquid layers. In equilibrium the thickness 
of the lower (second) layer is equal to Ha, and that of the higher (first) layer is (1 - H)a; 
O<H<i. The densities of the media, the coefficients of dynamic and kinematic viscosity, 
and the thermal conductivity and thermal diffusivity are equal to Pmr l)m* v,, %I%* and ~,,,(m = 1 
for the upper layer and m = 2 for the lower layer). The surface tension o depends linearly 
on temperature T: u = o,(i -a?). 

As units of length, time, velocity, pressure and temperature we take a, a21v,, v,ta, p1v12/aa 
and 8 respectively. In dimensionless variables the convection equations and boundary con- 
ditions are written in the form 



D& = -Vpp, f Ai?i, div ~7~ = 0, D,T, = P-‘AT, 

D& = --aVp, + v-~A~I,, div 5, = 0, D,T, = (xP)-’ AT, 

z = 1: iFI = 0, T, = 0; ZI= 0: ~7~ = 0, TI = s 

z = H + h: p1 - ps + R-l (W - MT) + Gh = &n,n, 

Sik Ti(‘)rtk - MzlWT,Iax~ = 0 

v, = v,, ah/at + ZQh/ax + vlvahiay = VI, 
T1 = Tp, (XaT,fax, - aT,ia2,) n, = 0 
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(I.0 

D, =alat + v,,,V, n = 1, 2 

sIk = (aVliiaxk + aV,,laz,) - q-1 (aV,,ia2+ -t aVzk/axj); 

Here urn* Pm and T, are the velocity, pressure and temperature in the m-th liquid, (the 
pressure is measured relative to the hydrostatic pressure), h is the displacement of the inter- 
face, n is thevector normal to the surface, ~(~)(1= 1,2) are orthogonal tangent vectors, R 
is the radius of curvature of the surface, P is the Prandtl number, G is the modified Galileo 
number, M is an analogue of Marangoni's number, and the parameter s is equal to 1 for heating 
from below and -1 Ear heating from above. 

When writing down the boundary-value problem (1.1) it was assumed that the Galileo 
;z;;;i.s B G, = ga,,,“lv,” (m = 1, 2) are of the order of unity, and that the quantities p,,$ 

,,, is the coefficient of thermal expansion in the m-th liquid) are small. On this 
basis the nrchimedean buoyancy force terms proportional to the Grashof number Gr, = $,J3Gm 
are omitted. 

The boundary-value problem (1.1) always has the solution 

Tie = s (1 - z)I-I, T,e = s[(l - H) + x(H - z)lz-1 (1 = (1 -H)+ xH) 

Ul e = 0, u,e = 0, pl= = 0, pc, = 0, he = 0 

corresponding to mechanical equilibrium. 
The equilibrium can become unstable as M increases for some method of heating. In the 

long-wave domain the neutral curve is given by the expression /2/ 

wave 

M (k) = M, + Nk2 (1.2) 

The threshold value M (0) = MC and the heating method (the sign of s) for which long- 
instability occurs is given by the formula 

s&f, = 21,Gx-‘IzJKH (1 - H) (1.3) 
J = [(I - H) + qH1, K = [(I - H)’ - qH’]-’ 

It can be seen that in the range O<H<H, = l/(1 -‘r I/{) the instability appears for __ 
heating from below, and in the range H,<H< 1 for heating from above. Within these ranges, 
and depending on the values of the parameters x and n, the derivative MC' = dM,ldH is 
either sign-constant or changes sign at the pointsH = H, and H = H,. The region of the 
x7 rl plane in which the function MC(H) is non-monotonic (Fig.1, curve 1) consists of two 
subregions. One of them is shown by the hatched area on Fig.2 (x, = 213, q,,, 1:0.1593); the 
other subregion is obtained by the transformation x +Ilx, n - lln. If the parameters x and 
n lie on the bqundary of the hatched region, the dependence of M, on H has a point of in- 
flection (Fig.1, curve 21, at which both the derivatives MC’ and iWn,' vanish. Outside the 
hatched region MC has no extrema and ML >O for all H (Fig.1, curve 3). 

Fig.1 Fig.2 
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The quantity 

N = AZ, (Ii, (x - 1) I-‘H (1 - H) (1 - 2H) + ‘i,, [q (1 - H) + (1.4) 
HI J-‘H. (1 - H) + 2r115 (1 - n) KH2(1 - H)? + WG-' f 

11,,,GPqKH3 (1 - H)3 [(I - H)2 - xH2]} 

can be either positive or negative, depending on the parameters of the system. In the latter 
case, however, long-wave perturbations are known not to be as dangerous, and so henceforth we 
shall consider the case A'> 0. 

2. Long-wave instability of the equilibrium leads to the development of thermocapillary 
flow, in which the amplitude of the distortion of the interface is, in general, of the order 
of the layer's thickness. This results in a rather complicated form for the governing 
equations /l/, the analysis of which is made more difficult. 

We shall restrict ourselves to studying long-wave thermocapillary convection in the 
immediate neighbourhood of the threshold Marangoni number and for small displacements of the 
interface k. In this case the investigation of problem (1.1) is simplified. 

Put 
M=M,+ EM(') (2.1) 

where E is a small parameter. We will assume the quantities W and G to be of the order of 
unity. According to (1.2) our principal interest (N>O) is in growing or weakly damped 
perturbations with wave numbers k N e*:r. and so it is advisable to perform a scale trans- 
formation r = s'&, y = &%y (2.2) 

We will use the evolution time-scale for long-wave perturbations 

Z = & (2.3) 

We restrict ourselves to consideringadisplacementh of the interface of order E. We 
make the change of variables 

h = Eli, T, = T,’ + &Elm. pm = EP,, (2.4) 

U m = e"GJ,, U, = &'iZVm, w, = &2W, (In = 1, 2) 

(where u, v, w denote the I-, y- and z-components of the velocity). 

ZJ?n, vnl and W, 
The function h,8,, P,, 

are expanded in powers of E: 

h = h(O) + CA(') + . . . (2.5) 
and similarly for the other variables. 

We substitute (2.1)-(2.5) into the full non-linear convection Eqs.(l.l) and equate terms 
of the same order in E. 

To lowest order in e the solution has the form 

(2.6) 

The expression for V,(O) is obtained from the formulae for u,,,(O) by changing aids 
to alay. To lowest order the function A@)(?, 8, Z) remains arbitrary. 

From the conditions for the system of equations of next order in e to be solvable we 
obtain an evolution equation for the function h(O), which reduces to the form 

B,jAP)/dZ = -M(l)@@) = N&Q@) + r/&&(hc0))* 

B = 2.9x-%-'Z*K [K-2 + 4qH (1 - H)] H-% (1 - H)-2 

(2.7) 

Note that B is always positive, because, according to (1.3), the quantities s and K have 
the same sign. We recall that N is assumed to be positive, because in the opposite case long- 
wave perturbations are known not to be as dangerous (see formula (1.2)). As was remarked in 
Sect.1, everywhere except for discrete values of the parameter, H = H,,, (Fig.2). Here we 



assume that M,'# 0; the case M,'=ll will be considered in Sect.3. 
We introduce new variables 

Then (2.6) reduces to the form 
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&%r + A,%Z + M@)A,Z + A,(Z)* = 0 (2.9) 

A one-dimensional version of an equation like (2.9) was obtained in /3/ when investigating 
long-wave convective motions in anomalous thermocapillary situations. 

We consider stationary one-dimensional flow regimes (Z= Z(X)) for which (2.9) takes 
the form 

&($ + M"'Z + ZZ)=O (2.10) 

The quantity Z is proportional to the displacement of the profile height from the mean 
position, and therefore satisfies the relation 

Y ZdX=O (2.11) 
--a 

Problem (2.10) has a family of periodic solutions 

Z(X)-q _ .?.I$ A f +?. A dn-2E (2.12) 

A= E = + (X - X0) (2.13) 

where dn5 is a Jacobi elliptic function with modulus 4, E(q) and X (d are complete 
elliptic integrals, and X, is an arbitrary constant. the spatial period of the function 
Z(X) is - 

L = 2n/k, k = nl/A/G [qK (q)l-’ (2.14) 

We first consider the region Mu)>0 (i.e. M>M,). The condition A>0 is 
satisfied in this region when O<q<p,, where q,zO.98038. The dependence of the profile 
amplitude A on the wave number k, specified by the parametric formulae (2.14) and (2.15), is 
shown in Fig.3 (the broken curve I). Branching occurs in the stable equilibrium region 
k>k, = IM(‘)l’fz, hence the stationary solutions of (2.11) are unstable. In the space of func- 
tions of prescribed period such a solution corresponds to a saddle point, whose stable manifold 
separates the regions of decaying and growing finite amplitude perturbations imposed on the 
equilibrium state. 

The dependence of the parameter q on k is shown in Fig.3, (the solid curve I). We 
remark that even for small deviations k away from unity, the parameter q rapidly approaches 
q*. so that the stationary profile is strongly non-sinusoidal. 

4 

‘4. 

0.96 

0,9Y 

0.92 

Fig.3 

For M(l) = 0 (M = MC), solution 
magnitude of A if q= q* (the solid 

(the broken curve 2 in Fig.3). 

Fig.4 

(2.12) satisfies condition (2.11) irrespective of the 
curve 2 in Fig.3); in this case we have 

A = 6 (q,K (qJWka 
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In the subcritical region M(l)< 0 (M< M,), solution (2.12) exists for all values of 
the wave number k, with q,<q<1. The dependence of the amplitude A and the parameter q 
on the wave number k is shown in Fig.3 by the broken and solid curves 3 respectively. The 
minimum value of A is reached when k-t0 (p-1) for the solution 

z = V, 1 M’) 1 ch-* (Vz ) M(‘) I”gX) 

The amplitude A, which determines the boundary of unstable equilibrium with respect to 
finite perturbations, increases rapidly as k increases, and because q stays close to unity, 
the form of the neutral finite-amplitude perturbation is strongly non-sinusoidal and resembles 
a chain of solitary waves. These properties would appear to explain the fact that finite- 
amplitude instability of equilibrium was not observed in numerical experiments 131 when 
spatially periodic pertubations were imposed, while at the same time such instability was 
indeed observed for perturbations in the form of solitary waves. 

Two-dimensional stationary solutions of (2.9) have not been constructed in analytic form. 
We will confine ourselves to analysing the branching of two-dimensional spatially periodic 
solutions in the form of rectangular and hexagonal cells for M(i) > 0 in the neighbourhood 
of k = k,. For rectangular cells a series expansion of (2.9) with respect to the amplitude 
gives the following approximate expression: 

z = [a (P) (k - k,) k.+l”~ cos kfl - PXcosSkY + 0 (k - k,) 

a(P)== 
48 (3- 4S*)(1-445*) 
_. 1&s-- 1&s*-9 ’ S==sin+ 

Here cp is the angle between the basis wave vectors of the rectangular structure. For 

9< 60" the branching is mild, but for cp>60" it is severe. For a hexagonal structure 
the branching has a two-sided character: 

Z=2jl-~*)@~X+2 ~o+os+kY +o(k--k,) 
! 

As has already been noted, the stationary solution determines the threshold of equilibrium 
stability with respect to finite amplitude perturbations. It is clear that for small k - k, 

the amplitude of a finite perturbation in the form of hexagonal cells, leading to an instability 
of the equilibrium, is much smaller than the amplitude of the corresponding perturbation in 
the form of rollers. 

3. We now consider 
certain values H=H,,, 
that instead of (2.1) 

and expand the variables 

the case when M,' =d. As was noted in Sect.1, this can arise for 
if the parameters n and x lie inside specified domains. We assume 

A = e'&, T, = Tm* + &&,, j,,, = d@‘,,, 

u m = eu,, 0, = EV,, w, = &*/‘wm 

as power series in.?% In the zeroth order we again obtain solution 
(2.6); the condition of solvability of the order elf2 problem reduces to M,' = 0. Finally, at 
order e we obtain the evolution equation for h(O): 

c?h@’ 
B aT = - M(‘)A,h@) - NA,%("' + $ M,"A, (hto’)s (3.1) 

where the quantities B, M(r) and N are the same as in (2.7). 
We restrict ourselve to the case M,">O, which corresponds to the minimum point H =H, 

of the dependence of Meon H; in the other case the stationary solution is unstable, as for 
.M,'#O. We make a change of variables in the first three formulae in (2.8), and put 

z = (l/*~~"~/*~~o) (3.2) 

Then (3.1) takes the form of the Cahn-Hilliard equation (see e.g. /4/): 

a&% f A,22 + MM,2 - A,23 = 0 (3.3) 

Bounded solutions satisfying condition (2.11) axe of some interest. In the region M(l)< 0 
the equation has no non-zero solutions. For MC') > 0 one can construct a family of spatially 
periodic motions in the form of rollers 

z=(~)“‘sn[(&y(x-xx,)], O<q<l (3.4) 
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(q is the modulus of the Jacobi elliptic function) with period 

(3.5) 

It is known /4-b/ that the only stable stationary solutions of (3.3) are the non-periodic 
solutions 

Z = ,(Mcl))'l* th I('/&('))'~~ (X - X,)1 (3.6) 

A solution of type (3.6) is a stationary "step" sustained by a convective vortex centred 
on X =X0. At large distances from the step the respective thicknesses of the lower layer 
are given by the expression 

H, = H, + (6 (M - M, (H&/M,“)“2 

Noting that for values of H close to H, the function M,(H) is approximately described 
by the formula 

M, (H) = M, (H,) + ‘W,” (H - HA2 

one can verify that M< M,(H+). Hence this convection instability does not develop far 
from the step. 

A solution of type (3.4) for small k is a collective of steps separated from one another. 
Although such structures are unstable, the growth increment of perturbations for motion with 
I;ik, <I is exponentially small, so that the process of disruption of such a structure can 
be very prolonged. 

Special consideration is required in the case 1 H-H, 1 N ~‘lt~ for which 
(H - ;f;?) - El/. 

M,’ = Mc’ 
and the quadratic and cubic terms are of the same order in the evolution 

equation for the displacement of the surface: 

B&P,,;& = __M(')&/#') - N&%(") + ‘l,M,“H(“)@W + 

~/sMc”~zhPP, H(O) = (H - H&‘/. 

(4.1) 

(where the notation is the same as in (3.1)). Changing variables in the first three formulae 
in (2.9) and assuming 

we reduce (4.1) to the form 

2 = (VgMc”)‘l* (h(O) + H(O)) 

6’2/8t + A,CZ -t JD’)A,Z - A, (P) = 0 (4.2) 

M(l) = MC’) + ‘l,M,“H(0)2 = (M - M, (H,)) / E 

The conservation condition for the mean thicknesses of both liquid layers gives, instead 
of (2.111, 

L 

lirn ?- 
s L-cm -x _-L 
Z dX = z, z _ 7 ,"'@O! 

( ) 

For stationary one-dimensional solutions we have 

d2ZldX2 + WC’)2 - ZS = CX + D (4.4) 

where C and D are constants. From the boundedness condition on the solution as X-t&-a, we 
must put C = 0. It is clear that finding stationary convective structures is formally 
equivalent to the problem of non-linear oscillations of a particle with potential energy 

U (2) = '/,M(')Z2 - '14Z4 - DZ 

(the role of time is played by the X coordinate). Bounded solutions for Z#O exist in 
the region of values of the parameter 

$8') > 0, 0 ( D < 2 (I/ WcQ)'l 3 z 
in which the potential U(Z) has the form shown in Fig.4. Of course, for fixed I@@) and D 
the problem has a family of periodic solutions for which the quantity 
lies in the interval E_< E<E+, and an aperiodic solution with 

E = ‘I, (dZ/dX)a + u fZ) 
E = E+. These soltuions 

can be expressed in terms of elliptic functions /4/. We remark that all solutions with ZfO 
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are non-monotonic, unlike (3.6). 
All the above-mentioned solutions are, however, unstable. This conclusion follows from 

the results of /5/, according to which the signs of the increments of normal perturbations, 
given by the boundary-value problem 

are identical with the signs of the eigenvalues of the problem 

Because problem (4.5) 

the maximum value u = u,,,~= 
from which it follows that 

In practice, however, 
presence of hard thermally 

A,@ + (B(” -3322)@=uO, &$~J%< 

always possesses sign-varying solutions 

0 = dZldX, o = 0 

(4.5) 

is non-degenerate and corresponds to a sign-constant eigenfunction, 

urnax > 0. 
the layers always have a finite length. It can be shown that the 
insulating side walls at X =&L imposes the boundary conditions 

x = &L: az/ax = a?z/&x~ = 0 (4.6) 

For L> 1 and Z < hV(‘)l’~~ problem (4.4), (4.6) possesses two monotonic solutions 
which can with exponential precision be written in the form (3.6) (with M(l) replaced by 
wq where X0 = TLZ. This solution is stable, as is also the case for Z=O. 

Thus the stationary profile has the form of a step and exists in the domain M>M,(H,)+ 
V6Mca (H - H$. 
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